I have a saying for the conditions where I live: “if I didn’t have bad seeing, I wouldn’t have any seeing at all.”

High-resolution imaging is dependent on the “seeing” - the steadiness of the atmosphere in terms of atmospheric turbulence that allows fine details to be seen in celestial objects.

Planetary photographers use the technique of “Lucky Imaging” to deal with seeing. Instead of shooting a single exposure, hundreds or thousands of frames are recorded, usually as a video file. Custom software including AutoStakkert!2 and RegiStax are then used to examine every frame in of these files, picking out the best ones that were captured in fleeting moments of better-than-average seeing. These lucky frames are then stacked together to improve the signal-to-noise ratio, and sharpened to reveal tiny details.

But did you know that you can also use the same planetary imaging techniques to resolve close double stars? You can even record wider pairs with very small telescopes, unlike the large apertures required for very high-resolution planetary work.

Double stars in the Trapezium, Theta Orionis,
The Trapezium, Theta Orionis, is located at the very heart of M42, the Orion Nebula. The four brightest stars in the Trapezium (A, B, C, and D) are easily visible in any telescope, though two fainter stars (E and F) require moderately sized amateur instruments and good seeing.
On a night of poor seeing, a total of 2,979 frames were stacked and sharpened in AutoStakkert!2 to produce this image taken with a Celestron C11 Edge and a Canon T2i (550D) recording video in Movie Crop Mode.

Requirements for Shooting Double Stars

As with any type of imaging, the quality of the optical system, collimation, and focus are important. And good seeing certainly doesn’t hurt. For really close double stars, your scope must have an aperture large enough to resolve the star separations involved.

This is where critical sampling then comes into play, meaning the image scale of your camera’s pixels must be smaller than the size of the detail that you hope to capture. A simple rule of thumb to achieve critical sampling is to increase your telescope’s focal length (usually with a Barlow) so that the focal ratio equals 6 times the pixel size in microns, or FR = P × 6. For example, suppose you have an f/10 SCT and a camera with 5-micron pixels. You would multiply 6 × 5 to get a focal ratio of f/30. So you would need a 3× Barlow.

The companion of Sirius, Sirius B (The Pup), can be seen at about the 10 o'clock position very close to the over-exposed disk of Sirius. The image was taken through an Astro-Physics 130EDFGT f/6.3 triplet apochromatic refractor operating at f/11 with a Canon T3i (600D) in 5× Live View video mode in BackyardEOS on a night of average seeing. A total of 1,000 frames were recorded and the best 100 frames selected and stacked in AutoStakkert!2.
The companion of Sirius, Sirius B (The Pup), can be seen at about the 10 o'clock position very close to the over-exposed disk of Sirius. The image was taken through an Astro-Physics 130EDFGT f/6.3 triplet apochromatic refractor operating at f/11 with a Canon T3i (600D) in 5× Live View video mode in BackyardEOS on a night of average seeing. A total of 1,000 frames were recorded and the best 100 frames selected and stacked in AutoStakkert!2.

You can relax the critical sampling criteria when shooting double stars that aren’t at the resolution limit of your telescope. For example, the image of Sirius and the Pup seen above, which have a separation of 10.58 arcseconds, was shot at only f/11 with 4.3 micron pixels (the rule of thumb would have preferred f/25).

Porrima binary star
Porrima, Gamma Virginis, is a pair of closely-orbiting identical stars separated by about 1.6 arcseconds. This image was shot with a Celestron C11 Edge SCT and a Canon T2i (550D) in 640 × 480-pixel Movie Crop Mode on a night of average seeing. The sharpest 525 out of 3,711 frames in the video were stacked and sharpened in RegiStax.

One nice thing about double-star imaging is that we can shoot for as long as we want. When trying to record high-resolution detail on a planet like Jupiter, we are limited in the length of time we can shoot before details get blurred by Jupiter’s high rotation rate; not so with double stars. Double stars can take years or even centuries to change appearance as seen from Earth, so we can record videos for long periods to beat the seeing, even when using a low frame rate.

 

Native Pixel Resolution

To shoot at the limits of your scope’s resolution, it’s also important to get the true 1:1 pixel resolution from your camera. This isn’t a consideration with dedicated planetary imaging cameras, which record at native resolution by default, but it’s less straight forward when shooting videos with DSLRs. Depending on the individual DSLR camera model, some will get you exactly 1:1 resolution or close enough to be usable, but some won’t get you close at all.

In general, you’ll need to record using Live View at 5× magnification to get you close to native pixel resolution. This often requires use of a laptop and software such as EOS Movie Record, BackyardEOS, BackyardNikon, Astrophotography Tool, or Images Plus

HD Video

Usually, you won’t be able to use a DSLR’s built-in high-definition (HD) video modes because with most cameras, the sensor’s original resolution, which may be something like 6,000 x 4,000 pixels, is downsampled to 1,920 x 1,080 in this format, significantly reducing its resolution.

 

Almach, Gamma Andromedae, is a beautiful pair a of gold and blue stars separated by 9.6 arcseconds. Shot with a Celestron C11 Edge working at f/10 with a Canon T2i (550D) recording video at 640 × 480 Movie Crop Mode. 5,675 frames were stacked in AutoStakkert!2 to produce this image.
Almach, Gamma Andromedae, is a beautiful pair a of gold and blue stars separated by 9.6 arcseconds. Shot with a Celestron C11 Edge working at f/10 with a Canon T2i (550D) recording video at 640 × 480 Movie Crop Mode. 5,675 frames were stacked in AutoStakkert!2 to produce this image.

Just Do It

Don’t let the math deter you, just throw a Barlow on your scope and get out there and try it with your favorite double stars. Shoot a video in your preferred software and use the same techniques as you would for shooting the planets. Select the components of the double star as the alignment points, and let the software pick out the sharpest frames, stack them together, and then sharpen the image. You’ll be surprised at how well this technique works — it’s pretty easy and a lot of fun, even with a small telescope!

Comments


Image of John-Thomas

John-Thomas

January 17, 2017 at 3:37 pm

Does the camera crop factor have any affect on these calculations?

You must be logged in to post a comment.

Image of Jerry Lodriguss

Jerry Lodriguss

January 17, 2017 at 10:48 pm

Hi John-Thomas,

No, crop factor does not affect the calculations.

Jerry

You must be logged in to post a comment.

You must be logged in to post a comment.