Early this morning a slender rocket roared up into the blue sky from the Baikonur launch complex in Kazakhstan, and a worldwide team of radio astronomers collectively roared with excitement as well. Riding atop the booster was Spektr-R, a radio observatory that will soon help them study some of the most universe's most energetic and enigmatic objects.

With two successful firings of its Fregat upper stage, Spektr-R is now orbiting Earth in a highly elliptical loop that stretches out to roughly 210,000 miles (340,000 km) — most of the way to the Moon. The orbit is so distended that throughout the mission's five-year duration its shape, orientation, and period (currently 9½ days) will shift continuously due to gravitational perturbations from the Moon and Sun.
But the whole point is to get the four-ton spacecraft as far from Earth as possible. It will become part of RadioAstron, a gigantic ground- and space-based radio interferometer of unprecedented scale and, therefore, unprecedented ability to resolve radio-bright features in galactic and extragalactic targets.
(Time out for an explanation: A telescope's angular resolution depends on its aperture. Interferometry combines the radio energy collected by two or more radio telescopes in a way that achieves the resolving power of a single virtual telescope as big as the individual dishes' distances from one another.)

Ken Kellermann, who co-chairs RadioAstron's international advisory committee, states that Spektr-R will create interferometric baselines 30 times greater than are possible among dishes confined to Earth's surface. "It will give by far the highest angular resolution available in astronomy," he notes.
Five days from now, Spektr-R will unfurl 27 carefully nested panels to form a graceful antenna 33 feet (10 m) across — the largest telescope ever launched. By November, following three months of engineering checks and test observations, the spacecraft should be ready for interferometric trials with some of the world's largest ground-based radio dishes. Those players include facilities in the continental U.S., Puerto Rico, Germany, Italy, and Russia.
To get an idea of the incredible range of cosmic targets that radio astronomers are waiting to study, just scan this long list of presentations from a 2008 symposium titled ""Radio Universe at Ultimate Angular Resolution."

This isn't the first time that radio astronomers have paired big "ears" on the ground with one in space. From its launch in 1997 until 2005, Japanese astronomers operated HALCA (short for Highly Advanced Laboratory for Communications and Astronomy), a 26-foot (8-m) radio dish. HALCA's orbit only extended out to about 13,000 miles (21,000 km), which when operated together with ground-based receivers yielded a resolution of 2 milli-arcseconds.

Notably, this isn't the first time that Kardashev has gotten a 10-m radio dish into orbit. Die-hard space aficionados will recall that in June 1979 a ferry craft delivered the KRT-10 radio telescope to the Salyut 6 space station. Cosmonauts Vladimir Lyakhov and Valery Ryumin operated the big dish for several weeks — then had to conduct an emergency spacewalk when its wire-mesh surface became entangled with the station's exterior after they tried to eject it.