Here’s all you need to know to help us measure the size of Earth’s shadow during the second lunar eclipse of 2022.

Amateur astronomers often plan how they’ll take photographs, image sequences, or even time-lapse videos of a lunar eclipse. But don’t overlook the scientifically useful projects that are just begging to be carried out. You don’t need anything but clear skies and some very simple equipment.

Color

Total lunar eclipses come in a great variety of brightnesses and hues. In February 1860, Irish amateur Mary Ward likened the Moon to “a red-hot penny” in the sky. But the famously dark eclipse of December 1963 was so dim that some skywatchers could not find the Moon when they stepped outdoors near mid-totality!

To help in comparing reports from various observers, even years and cultures apart, French astronomer André Danjon devised a five-point scale that is still used today. As shown below, the Danjon values range from 0 (Moon almost invisible at mid-totality) to 4 (very bright copper-red or orange Moon). To learn how to give this eclipse a Danjon L rating, go here.

Danjon scale of totality brightness
Use this five-step Danjon scale to judge the darkness of the Moon during a total lunar eclipse.
Leah Tiscione / Sky & Telescope

Brightness

For many years Brazilian astronomer Helio C. Vital has led the Rede de Astronomia Observacional (Observational Astronomy Network) in monitoring the brightness of the eclipsed Moon, not only as it moves across the shadow but also from one eclipse to the next. For example, last May 15-16 his team of advanced amateurs found the Moon's visual magnitude to be -0.8 ± 0.3 at mid-eclipse, a determination of greater scientific value than the Danjon rating (which is rather subjective). Will the November 8th eclipse be darker, owing to the further spread of aerosols in Earth's atmosphere from the Tonga volcanic eruption last December? Vital expects a very small effect, as he explains, but only new observations will tell for sure.  

So how do you make an estimate? If you wear thick glasses you can try taking them off so the Moon and bright planets or stars look like equal-size blobs. A better technique is to look at the Moon through the wrong end of binoculars, and to compare its brightness seen that way with various bright stars seen without optical aid. Do this at regular intervals as the Moon crosses the umbra, and in your report be sure to mention the power of the binoculars and which comparison stars you used.

Crater Timings — Measuring the Size of the Umbra

Lunar craters for timing
By timing to the nearest 5 seconds when a few prominent craters and spots cross Earth's shadow, you can help Sky & Telescope gauge the size of Earth’s silhouette (see end of this post). Click on image for a larger view.
Gary Seronik

Timings of celestial events offered early mariners a way to find their longitude far from home. This method was used by Christopher Columbus, who timed the start and end of a lunar eclipse in 1504 during his fourth trip to the New World.

When astronomers tried to refine this method, however, they quickly found that the dark center of the Earth’s shadow, called the umbra, was larger than pure geometry indicated by about 2%, because our atmosphere adds to Earth’s effective diameter.

To time when the Moon's edge enters or leaves the shadow is often iffy. Instead, it’s more accurate to time when individual spots and craters cross the shadow's edge. For example, from 697 crater timings sent in by Sky & Telescope readers, I derived an enlargement of 2.1% for the July 1982 eclipse. But for a similar event only six months later, 298 timings gave 1.7% enlargement. In each case the probable error was less than 0.1%. So the enlargement definitely varies slightly from eclipse to eclipse, for reasons not yet understood.

The Moon photo above has prominent features labeled; click the image for a larger version to print out and take with you to the telescope. Sky & Telescope predictions of these features’ entrance and exit times in the umbra during the upcoming eclipse are given in the table below; you can also download a PDF file of this table: November 8, 2022.

S&T’s Eclipse-Timing Predictions
for the Total Lunar Eclipse of November 8, 2022

Entry (UT)Exit (UT)
Grimaldi9:10Harpalus11:47
Billy9:14Aristarchus11:49
Kepler9:20Grimaldi11:50
Aristarchus9:21Kepler11:55
Campanus9:24Plato11:55
Copernicus9:29Billy11:57
Pytheas9:31Pico11:57
Birt9:32Pytheas11:59
Tycho9:33Timocharis12:01
Harpalus9:37Copernicus12:02
Timocharis9:37Aristoteles12:04
Pico9:45Eudoxus12:06
Manilius9:46Campanus12:09
Plato9:47Manilius12:15
Dionysius9:48Birt12:16
Menelaeus9:50Menelaus12:18
Plinius9:54Tycho12:19
Eudoxus9:55Plinius12:21
Censorinus9:56Dionysius12:23
Aristoteles9:57Censorinus12:31
Goclenius10:00Proclus12:31
Taruntius10:03Taruntius12:35
Proclus10:05Goclenius12:38
Langrenus10:07Langrenus12:44

Before making your timings, set a watch to accurate Internet time or use a time app that displays seconds on your phone. Write down the time (to the nearest 5 seconds) when the edge of the umbra crosses the center of the crater or other feature.

It's as simple as that! The shadow edge is a little fuzzy, so try to judge the part of the shadow-edge where the light falls off most rapidly, and adopt that for your timings.

It's best to use a scope with an aperture of at least 2.4 inches (60 mm), but not more than 8 inches (200 mm). The whole point is to make timings the same way they've been done for 300 years, so results can be compared.

If you carry out any of these simple projects at the next eclipse of the Moon, please e-mail the results to me. I'm collecting them for later analysis.

But no matter what you do, set aside a little time to sit back and enjoy the eclipse, too!


Comments


Image of Antonio Campos

Antonio Campos

February 20, 2008 at 12:33 pm

Dear Observers,

I've been observing Lunar Eclipses for many years and I assure that is a thankful activity. The register of all events of the project developed by Hélio C. Vitalare very welcome to REA/Brasil (Brazilian Observers Network) and CEAMIG (Minas Gerais Astronomical Study Center).

Very Best Regards.

Antonio Rosa Campos

You must be logged in to post a comment.

Image of Graham-Wolf

Graham-Wolf

January 25, 2018 at 10:12 pm

Thanks heaps, Roger!!

Couldn't find any crater timings predictions anywhere and was getting nervous. Your article popped up just in time! I've been doing these crater timings for some 4 decades or more. But, with Byron Soulbsy sadly gone many years ago, no co-ordinator seemed to have stepped into the breach.

Now, if only the weather -gods can be nice to me on the big day. 76 minutes is quite a lot of totality, down here in the antipodes.

Regards
Graham W. Wolf at 46 South, Dunedin, NZ.

(Well, actually... 45.93486 S, 170.34898 E, 142.0m amsl)

You must be logged in to post a comment.

Image of Roger W. Sinnott

Roger W. Sinnott

January 28, 2018 at 7:20 am

Thanks, Graham, and good luck! I enjoyed an interesting exchange with Byron over the years.

You must be logged in to post a comment.

You must be logged in to post a comment.